10p^2=64

Simple and best practice solution for 10p^2=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10p^2=64 equation:



10p^2=64
We move all terms to the left:
10p^2-(64)=0
a = 10; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·10·(-64)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*10}=\frac{0-16\sqrt{10}}{20} =-\frac{16\sqrt{10}}{20} =-\frac{4\sqrt{10}}{5} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*10}=\frac{0+16\sqrt{10}}{20} =\frac{16\sqrt{10}}{20} =\frac{4\sqrt{10}}{5} $

See similar equations:

| -7x-183=-14x+48 | | 10w=7300.W= | | 4b+9=89 | | 2c+2(c-6)=76 | | 12x+10+15x+135=180 | | 45.25=19.83+z | | 2(y-80)=26 | | -5-7a+5=-14 | | 2(y-80)=24 | | 5+x/6=x+1 | | 95-x=227 | | 24=t/5+17 | | 4(2x+1)=6(2x) | | p-36=13 | | 5a-10=10(1/4a+12 | | x+7/3=2x-10/3 | | 0.5y+.025=-0.075 | | 1/x-2-1/x-1=2 | | n+37/7=10 | | -p-5p=-42 | | 2(x-12)2=200 | | 2(2b-7)=1-(3+2b) | | u+24/8=4 | | 2(x+12)=200 | | 82=h+3 | | 82-w=45 | | 10(x-1)=-10 | | -8x+4x+10-5x=55 | | -78+3x=42-x | | x*4=55 | | -6(7y+8)=-6 | | 8g+1=-3g+12 |

Equations solver categories